4. A. Hurkmans, E. G. Overbosch and J. Los, "The trapping of K and Na atoms by a clean W (110} surface;
trajectory calculations,” Surf. Sci., 62, No. 2, 621 (1977).

5. A, Hurkmans and L. Trilling, The scattering of ions from a clean solid surface in the 1 {0 10 eV range,
Surf, Sci., 59, No. 2, 361 (1976).

6. A. 1. Erofeev and V. 1. Zhuk, "Dispersion of a rarefied gas flow on a rough surface,® Zh. Vychisi, Mat,
Mat. Fiz., No. 2 (1977).

7. V. 1. Zhuk, "Three-dimensional interaction of a gas flow with a rough surface,” in: Numerical Methods

in Rarefied Gasdynamics, Second Edition [in Russian], Vys. Tsent. Akad. Nauk 8SSR, Moscow (1975}).

RELATIVISTIC ELECTRON BEAM WITH A VARIABLE
DEGREE OF CHARGE NEUTRALIZATION

A. V. Zharinov, D. N. Novichkov, UDC 533.951
and A. S. Chikhachev

A rather large number of theoretical papers have appeared on the steady states of relativistic beams
which are uniform along the axis {(cf. reviews [1, 2]), but under actual experimental conditions the degree of
charge neutralization of a beam may vary considerably along the tube axis. In quasistationary and stationary
systems the ion density may vary appreciably along the length when there are longitudinal sinks [3]. In addi-
tion, a number of papers (e.g., [4]) consider the focusing of beams in a guide tube by a pressure gradient along
the beam. Thus, it is interesting to consider the equilibrium state of a beam for a variable degree of charge
neutralization along the tube through which a quasisteady beam is propagated.

We assume that a beam with a current I is injected along the axis of a metal tube of length 2L with a
density of neutral particles ny(z). The ion density ni(z) arising as a result of ionization will also vary. For
simplicity we assume that the beam is narrow enough so that we can consider ny, nj, and ne, independent of the
radius p. We denote the characteristic scale of the nonuniformity of the nj distribution by I, where [ 2z L.,

We assume that the density of neutral atoms, and consequently the ion density, is maximum at z=0
(—L=z=<1). By assumption the state of the beam varieg from nearly forcefree at the ends of the tube toward
quasineutral, but the conditions for quasineutrality and force-free motion are not satisfied exactly (Ne>ni s
ng/y?, where v is the ratio of the total energy of an electron to its rest energy). Under these conditions it is
required to find the characteristics of an axially symmetric beam (ne(z), nj(z), and ¥(z)), taking account of the
effect of self-fields on the motion of beam particles.

If v if the velocity of an electron, and E and H are the intensities of the electric and magnetic fields, the
equation of motion of an electron can be written in the form

. 1
V=B - v e+ Lo, N

where e and m are the charge and mass of the electron, and ¢ is the velocity of light.

We use the adiabatic approximation to solve (1); i.e., we assume that E, H, and ¥ vary slowly along the
axis of the tube. Then we can set E,~0,

The projection of (1) along the direction of the radius p of a cylindrical coordinate system gives

. . } {2)
o +mL?{Ep (1— %‘)_‘Z—H"[: 0.
The field components E p and Hy are E p=21rep(ni — ne) and Hp =—2mepnefz, where ne(z) is the electron

density in the beam, 85 =v;/c, and v, is the average longitudinal velocity Qf the electrons. Then (2) can be
written in the form
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If 9 and Qlyare assumed constant Eq. (3} can be integrated to give

2
Q2 2 . Q2 - D\ A2
! (———dp ) =Qp+ (';21— P — Qa‘) e G

e \at

4

where py and pj are respectively the initial radius and the initial transverse velocity of an electron.

The role of the nonlinear term in (8) can be estimated from (4). If the exponent is small its expansion
and the subsequent averaging of the solution over the oscillations for large Qg gives

) 1 2 .6% D -1 of c
e* =?(Pa + ‘—O—%*‘) pPP=—= {p% (Q% - C_jp%) * pg}“

, ¢
& =P

It is clear from these relations that if the radius of the initial distribution is small (p3Q}/ c*«1), and the initial

velocities of the particles are parallel to the axis (p =0), the radius always remains small and varies slowly

only with a change in Qg, and the transverse velocities also remain small. The condition p<«c implies py<«<c/Q,.

To satisfy this inequality the concentration of electrons must not be too large, i.e., the beam currents must

not be too large. Using the maximum value of Qg at z=0 we have as an estimate

ora

08 < ymc?/2sedn,,
i.e., a sufficient condition is
i v/2, (5)
where i=el/mc® and I=7rep%nec is the beam current. We note also that in the range of parameters of interest
to us we can set Q¢~ Q.

Thus, we assume that (5) is satisfied; i.e., the nonlinear term in (3) gives only a small correction to the
results obtained.

If the condition y>1 is satisfied, Bz~ 1 for all the beam particles. Then in (3) the variable t can be
changed to z: _
o' Q¥ =0, (6)

v

o 2me? p? n, (4]
O" = » i S—— —
== yine? (nl (1 o2 ) 2 ) .

We consider the case when (6) can be solved in the WKB approximation, i.e., when 0% @!l. Since Q can
be estimated as Q® we/c, Where wk =2me’ne/my and Q'~ 0/, a sufficient condition for the applicability of the
WKB approximation is [ »c/we, which is satisfied for a very broad range of parameters.

where  in general depends on p also:

The solution of (6) has the form
Ay Ay . a9 (8)
p= Ve cos 0 (z) + 75 sin 0 (z), = = Q(z).

Because of the large values of ¢ only quantities averaged over the oscillations have a physical meaning.
From (8) the averages of the squares are _
2(0) = Cy/Qa), p*(2) = C122). ©
We note that the following inequalities must be satisfied:
Co>0, C; >0, Qz)> 0.
Equation (7) for ©(z), which contains a nonlinear term, can also be averaged over the oscillations to give

@ () = 2% (n, (1 - 20N — 22 10)

ymc?

Equation (10) takes account of the nonlinear character of the transverse oscillations of an electron, butis
valid only when the correction related to the constant C; is small, which is necessary to satisfy the inequality

CAQr g Q2
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We note also that in (10) Q depends on the initial conditions, which is generally the case for nonlinear
oscillations.

Equation (10) relates the functions Q(z), ¥(z), n 1(z), and ne(z). The value of ¥(z) can be found from y(z) =
YR *+e®/mc?, where YR is determined in terms of the potential of the tube wall.

It has been assumed that the degree of charge neutralization of the beam increases from the ends of the
tube toward the middle but does not reach unity, since in the case under consideration the charge of the beam
must be large enough so that secondary electrons produced in ionization reach the wall of the tube,

For a potential &(z) and a very thin beam (In (R/a) >>1/2), we have the relation
D(2)= —2mnea’(z)(n (z)—n,(z))In(R/a(z)),
so that

@) =12 —EECE (n, (3) — 1, (a)) In 2 2 (11)
From Eq. (9) the radius of the beam is given by
a¥(z)= C4/3a).
For a closed system the beam current is constant
I = na*(z)en (z)c = const,
from which

n, = C,/a¥(2), {12)
and
e = C,Q(2). (13)
Eliminating Q(z) from (13) and (10)
(CsCo? - Cony 14
n, (z) = “/ ngg) + _6'.2. ngae , {14)

where Cy, ..., C; are positive constants which depend on the initial conditions, and Cy=2ne¥mec?,

Thus, Egs. (11), (12), and (13) suffice for the determination of the electron density in the beam and the
potential distribution for a given ion density nj(z). Because of the presence of the factor In(R/), however,
these relations cannot be expressed explicitly.

One general conclusion can be drawn concerning the character of the functions ng{z) and ¥(z), namely,
that if n; is symmetric about z=0, ng and ¥ will also be symmetric,

In principle the relations obtained above express y and ng in terms of the ion density, which can be
deter mined if the densities n; and ng and the potential distribution are known.

For simplicity we assume that z varies from 0 tc L. Then for nj{z) we have

v (8) m (8) 8 (15)

ni(z):“_ =
0 Y 2 (& —v(E)

where M is the mass of an ion and vi(z) is the frequency of collisions of beam electrons with neutral atoms
leading to the formation of ions:

vi(2) = no(2)ase,
where g; is the ionization cross section, :

Equation (15) is a consequence of the equation of continuity for ions and is valid only for a monotonic
function ¥(z) in the integrand.

Henceforth we shall be interested mainly in a range of parameters corresponding to characteristics of
the beam close to z=0. We omit the term ng v? on the right-hand side of (10), so that instead of (14) we obtain
the simpler expression

n (2) Y O "
%@zm@&mﬁﬁ

Equation (1) can be written in the form
0= vx — IAGE — nif2)in,(a). an



A(z) =2In(R/a(z)), where because of the very slowly varying logarithmic function A ~ const= Ay, Equations (15)~
(17) form a self-consistent system of equations which uniquely determines the required quantities in terms of
the density of neutral atoms ny(z).

It is convenient to introduce a new function

n{(z)/ng(z)= 1 — a(z), n;(0)/n(0)= 1 — o,
a(z)= oy + a,(z).

All the required characteristics nj, hg, and Y can be expressed in terms of a(z):

_ d—w2  n,(0)
n:(2) = 41— iAoy (z) (1—ay)’ ' (18)
Vo

1—a n, (0)

~iAn @) (I—ay)
Yo

V(@)= v — iAoy(z). (20)

The function a(z) is determined from the nonlinear integral equation (15). In general this equation is very diffi-
cult to solve, but if we use the condition ¢;(z) «1 — @, which is valid for small z, and assume iAfy,«1, the
equation takes the simpler form

ne(z) = 19)

z

1=-9% |__m®d& 1 —0,V X,
Viky) Vo @ —a @1~ % %o = 0t ]/2'”

By using the expansion () = ay(z) + (¢ —z)ay(z):

z

02
a )= | K @t
]

@g)*

where

no (B) dE
g Vi—3
On the basis of Eqs. (18)-(20) a qualitative analysis can now be given of the behavior of ny(z), ng(z) and
v(z) near z=0. All three functions have maxima at z=0. The total density falls off twice as rapidly as the
electron density, and because of the condition iA/yy<«1 the relative falloff of ¥(z) is very slow.

Ky(2) =

A more exact analysis requires a numerical solution of the equations presented.

In summary we have obtained a self-consistent system of equations for determining the state of non-
uniformity along the axis of an axially symmetric relativistic electron beam, taking account of the ionization of
the residual gas.
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